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Abstract—Spatial metrics derived from satellite imagery are 

useful measures to quantify structural characteristics of 

expanding cities, and can provide indications of functional land 

use types. Images of medium resolution are cheap, widely 

available and are often part of extensive historic archives. Their 

lower resolution, on the other hand, inhibits studying urban 

morphology and change processes at a more detailed, intra-

urban level. In this study, we develop spatial metrics for use on 

continuous sealed surface data produced by a sub-pixel 

classification of Landsat ETM+ imagery. The metrics 

characterise the shape of the cumulative frequency distribution 

of the estimated sub-pixel fractions within a building block by 

fitting an exponential and a sigmoid function with a least-squares 

approach. A classification tree is then used to relate the metric 

variables to urban land-use classes selected from the European 

MOLAND topology. This approach shows promising results, but 

still needs improvement which may be achieved by including 

spatially explicit metrics in the analysis. 

I.  INTRODUCTION 

More than half of the world’s population lives in urbanised 
areas, and in the future cities will house an increasing number 
of people in both absolute and relative terms [1].  While spatial 
expansion of cities is a natural consequence of demographic 
and economic trends and changes in lifestyle on which local 
and regional policy-makers have seemingly little grasp, local 
policy should be concerned about how population growth is 
translated into spatial patterns of urban growth. Urban sprawl 
and increased soil sealing provide symptomatic evidence for 
the fact that many European and North-American cities grow 
faster spatially than demographically. A study of the European 
Environment Agency confirms this by reporting that European 
cities have expanded on average by 78% since the mid-1950s, 
while during the same period the population increased by only 

33% [2]. This dilution of the urban fabric has both direct and 
indirect impacts on the environment and the well-being of 
urban residents.  For instance, uncontrolled sprawl increases 
energy consumption, pollution and greenhouse gas emissions, 
demands more transport infrastructure, may lead to increased 
flood risks and encroaches on natural landscapes.  Effective 
urban management and planning strategies at different levels of 
government are therefore essential to temper the environmental 
consequences of urban land consumption. To develop and 
monitor such strategies and to assess their spatial impact, 
analysing and characterising changes in urban structure is of 
great consequence. Data from earth observation satellites 
provide regular information on urban development and could in 
that way contribute to mapping and monitoring structural 
characteristics of expanding cities. A rather novel approach in 
this research area is to describe urban form by means of spatial 
metrics, i.e. quantitative measures of spatial pattern and 
composition that have recently shown considerable potential 
for structural analysis of urban environments [3][4]. Spatial 
metrics derived from satellite imagery may also help to 
describe the morphological characteristics of urban areas and 
their changes through time [5]. Because previous studies have 
demonstrated a relationship between the spatial structure of the 
built-up environment and its functional characteristics [6], 
quantifications of urban morphology through spatial metrics 
can also be related to land-use.  However, despite the currently 
available high resolution satellite images, which provide 
increasingly detailed information about urban surface 
materials, most of the historic archive imagery consists of 
medium resolution (MR) data such as from the Landsat or 
SPOT programmes. The lower resolution of such images often 
compels studies to treat cities as a single unit rather than to 
analyse them on an intra-urban basis. To study urban growth 
patterns with a time-span that exceeds the availability of high 
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resolution imagery or in cases where data costs are of concern, 
spatial metrics that succeed in capturing structural information 
from images with a pixel size of 20 meters or more should be 
used.  In this study, we aim to characterise urban structure and 
land use in the Greater Dublin area by developing spatial 
metrics for use on continuous sealed surface data produced by 
a sub-pixel classification of Landsat images. These spatial 
metrics are calculated for building blocks that are 
homogeneous in terms of land-use and will be used as variables 
by a classification tree, a well-known rule-based classifier, to 
allocate each building block to a particular land-use type. This 
approach will make it possible to tap into the extensive historic 
archives of MR images to characterise urban growth patterns at 
a reasonably detailed level, on an intra-urban basis and at low 
cost. 

II. STUDY AREA AND DATA 

The study area for this research is Dublin, the political and 
economical capital of Ireland and home to over 40% of the 
country’s population. Dublin experienced rapid urban 
expansion in the 1980’s and 1990’s, fuelled by the building of 
new roads that drove residential and commercial development 
rapidly outward into the urban fringe. While the Greater Dublin 
area as a whole experienced only a moderate population 
growth of 3.6% between 1986 and 1996, population in the 
urban periphery increased more rapidly with as much as 9.6% 
in South Dublin and 21.1% in Fingal, to the north [7]. This has 
resulted in a hollowing of the central city and a simultaneous 
growth and movement into Dublin’s low density, car-oriented 
and seemingly unplanned periphery [8]. A Landsat TM image 
(path 206, row 23) acquired on May 24th 2001 is used to derive 
spatial metrics for the study area. The image is geometrically 
co-registered to the Irish Grid projection system and the raw 
digital numbers are converted to exoatmospheric reflectance 
according to the formulas and calibration parameters presented 
by The Landsat 7 Users Handbook [9]. An existing land-cover 
map, derived from a Quickbird image acquired on August 4th 
2003, is used to obtain reference data for training and 
validating the sub-pixel classifier. Reference land-use classes 
are acquired from the European MOLAND land-use typology1 

 

III. DERIVING CONTINUOUS SEALED SURFACE DATA 

The downside of using MR data for urban analysis is the 
relatively low spatial resolution, which may lead to low 
mapping accuracies because the sensor’s instantaneous field of 
view (IFOV) often contains different types of land cover, 
especially in urban areas. To overcome this drawback we 
applied sub-pixel classification, a technique that relates a 
pixel’s spectrum to fractions of its surface constituents. One of 
the most common methods to approach this problem is linear 
spectral mixture analysis (LSMA), whereby a pixel’s observed 
reflectance is modelled as a linear combination of spectrally 
pure “endmember” reflectances [10]. LSMA has recently 
received quite some attention in studies that aim to characterise 

                                                           
1 MOLAND: Monitoring Land Use/Cover Dynamics. MOLAND project 
website URL: http://www.moland.jrc.it. Date last accessed: 12 March 2009 

 

urban environments [11]. Some of these studies resort to the 
components of the Vegetation, Impervious surfaces and Soil 
(VIS) model proposed by [12] to represent the endmembers of 
the LSMA model. However, not all pure vegetation, man-made 
impervious surface or bare soil pixels necessarily occupy 
extreme positions in feature space and can, as such, not directly 
be used as endmembers for linear unmixing. One reason for 
this is that pure pixels are spectrally variable because of 
brightness differences, even though they may represent a 
similar surface type [13].  Another reason is spectral confusion 
between different land-cover types such as dry bare soils and 
bright impervious surfaces. While some studies on other areas 
did succeed in defining a soil endmember (e.g. [14]), this is not 
possible for the Dublin study area. We therefore opt to use a 
sub-pixel classification approach in which soil is not used as a 
separate surface component. Instead, a linear regression model 
is developed to estimate the proportion of vegetation cover 
within each Landsat pixel. Discounting for a moment the 
presence of water and exposed soil in cities, the vegetation 
fraction within a pixel can be considered as the complement of 
the man-made surface fraction. Temporal differences in 
vegetation cover between the ETM+ image and the reference 
samples taken from the high resolution land-cover map are 
filtered out by a temporal filtering technique based on iterative 
linear regression between NDVI values [15].  

Because the regression model only estimates vegetation, 
and therefore does not explicitly distinguish urban from non-
urban surface cover, a mask is developed to indicate pixels 
belonging to urban land cover. Only pixels within the urban 
mask are subjected to the unmixing model.  To create this 
mask, we apply a non-parametric unsupervised classifier and 
enhance the output map with knowledge-based post-
classification rules. The unsupervised classification approach is 
based on Kohonen self-organising maps (SOM) [16]. A SOM 
is a type of artificial neural network that was originally 
developed to visualise topologies and hierarchical structures of 
multi-dimensional data by transforming the input space into an 
ordered two dimensional map. The SOM architecture consists 
of two network layers: an input layer, which is fully connected 
to a typically two dimensional array of nodes called Kohonen 
layer or codebook vector map. A randomly initialised weight 
vector of the same dimension as the input data vectors is 
associated with each node. The SOM is trained by passing an 
input vector (i.e. a pixel’s spectral values) to the network, and 
by choosing a winning node based on the smallest Euclidian 
distance between the input vector and the weight vectors. Then, 
the weights of the winning node and its neighbours are adjusted 
in order to reduce the node’s distance to the input vector. After 
each image pixel or a representative set of image pixels is 
passed to the SOM during training, the built model can be 
applied to any part of the image and even to other images when 
atmospheric or other calibration constraints are taken into 
account. Because the trained SOM network assigns each pixel 
to a particular node in the codebook vector, each such node can 
be considered to represent a certain information category. This 
is similar to other unsupervised classification approaches, 
except that nodes or classes that are closer to each other on the 
codebook vector are also more spectrally similar, which makes 
them easier to interpret. In this research, we apply a SOM with 
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a 3 by 5 Kohonen layer, which divides the image into 15 
spectral classes. Although Kohonen SOM is a rather advanced 
approach to unsupervised classification, spectral confusion 
between certain surface types is still likely to occur and will 
cause errors in the urban mask.  To enhance the classification 
output with respect to the intended purpose, i.e. distinguishing 
urban from non-urban areas, a rule-based post-classification 
approach is adopted [17]. This method uses rules that operate 
on clumps or groups of adjacent pixels of the same class. If 
certain user defined criteria are met, a clump’s original class 
label (O) is changed to a target class (T). For the purpose of 
developing an urban mask in this paper, the target class is 
always a neighbour’s class label. Each rule uses two criteria: 
area (A) and adjacency (Ad). The area criterion constrains a 
rule’s operation to clumps of a certain maximum size, 
expressed as number of pixels within the group. Adjacency 
constrains a rule to pixel groups that are next to clumps of a 
given type. The value of the adjacency criterion represents the 
fraction of the clump’s border that is shared with the target 
class. For example: a rule might be developed to assign small 
bare soil groups (O = bare soil, A < 20 pixels) that share more 
than half of their border with urban clumps (Ad > 0.5) to the 
urban class (T). The values of O, T, Ad and A are determined 
from a visual inspection of the unsupervised classification, 
keeping in mind the intended use of the post-classification. For 
the purpose of developing an urban mask, it is especially 
important that confusion between rural bare soil and urban 
fabric is resolved, and that each class from the unsupervised 
classification is unambiguously assigned to either urban or non 
urban. In addition to the knowledge-based rules, all single pixel 
groups are removed from the map before and after post-
classification to reduce the amount of noise. This is done by 
applying a majority filter on a 3 by 3 window centred on 
groups that consisted of only one pixel.  The urban mask is 
validated by a visual sampling of about 1% of the image pixels 
(2897 pixels). 

IV. CHARACTERISING URBAN STRUCTURE WITH SPATIAL 

METRICS 

A. Defining the spatial domain 

Spatial metrics are calculated within a spatial domain, i.e. a 
relatively homogeneous spatial entity that represents a basic 
landscape element. Naturally, the definition of the spatial 
domain directly influences the metrics and will depend on the 
aims of the study and the characteristics of the landscape [3].  
Some studies conduct global comparative analyses of urban 
form and define an entire city as a single spatial domain [18]. 
Other studies examine intra-urban growth patterns or land-use 
changes at a coarse level and divide the urban landscape into 
relatively large administrative zones (e.g. [5]), concentric 
buffer zones [19] or large rectangular sample plots [20].  If an 
analysis of urban morphologies, land-use or change processes 
is required at a spatially more detailed intra-urban level, the 
city has to be divided up into smaller and relatively 
homogeneous units [5].  A commonly used approach in remote 
sensing data analysis is the use of a moving window or kernel, 
from which statistical or structural information can be derived. 
Kernel-based methods, however, have a number of 

disadvantages compared to region-based approaches, including 
the difficulty of selecting an optimal kernel size and the fact 
that the kernel is an artificial construct that does not conform to 
real urban land-use zones or morphological units [6]. In this 
study, we define the spatial domain by intersecting a detailed 
road network with the MOLAND land-use map.  This provides 
us with 5767 blocks that are relatively homogeneous in terms 
of land-use.  

B. Spatial metrics based on the cumulative frequency 

distribution of sealed surfaces 

The hypothesis of our research is that the composition of 
the building blocks in terms of the distribution of the sub-pixel 
sealed surface proportions provides an indication of the land-
use class to which it belongs.  As a first step, the percentage of 
sealed surfaces within each block is calculated. The blocks are 
then divided into 4 classes according to their degree of soil 
sealing: 0-10%, 10-50%, 50-80% and more than 80%. The 
definition of these four classes is based on the criteria used in 
the MOLAND scheme to distinguish continuous from 
discontinuous urban fabric and residential discontinuous urban 
fabric from residential discontinuous sparse urban fabric. This 
provides us with a map that is used to stratify the study area: 
blocks with less than 10% sealed surfaces are labelled as non-
urban land (fallow land, large vegetated areas, sea, etc.) and 
blocks with more than 80% sealed surface cover as continuous, 
dense urban fabric. The remaining 3494 blocks with 10-80% 
sealed surface cover are subjected to an analysis with spatial 
metrics because they belong to different land-use types such as 
sparse residential areas versus industrial zones with empty, 
vegetated plots and commercial or service areas.  These land-
use types cannot be distinguished based only on the average 
sealed surface cover.  

To further characterise our building blocks, the cumulative 
frequency distribution (CFD) of the proportion sealed surface 
cover of the Landsat pixels is examined. We assume that the 
shape of this distribution function can be related to the 
morphological characteristics and hence the land-use type of 
the building block it represents. Low and medium density 
residential land-use blocks, for instance, contain more mixed 
urban-vegetation pixels than industrial areas, which is reflected 
by a sigmoid-shaped CFD. To express the CFD’s shape 
quantitatively, two functions are fitted using a least-squares 
approach: 
  
 (1) 
 
and 
               . (2) 
 
Where P(x) is the predicted cumulative frequency within 
block x of impervious surface fraction f and a, b, c and d are 
function parameters determined by the least-square approach. 
Function (1) can assume an S-shape, which is suitable to 
represent residential areas, while (2) is an exponential 
function, more suited to represent industrial zones and other 
types of non-residential land. The error of fit E(x) can be 
expressed as: 
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where CFD(x) is the observed cumulative frequency 
distribution of block x. The parameters of these functions are 
used as spatial metrics to describe the morphology of the land-
use blocks. The errors of fit for functions (1) and (2) and the 
difference between them are also included as variables 
because they too provide an indication of which function best 
describes the CFD of a building block. The area of the blocks 
in square meters and the average sealed surface proportion are 
used as non-CFD based metrics.  

C. Setting the rules with a classification tree 

To examine the CFD based metrics and link them to the 
MOLAND land-use classes, a supervised classification based 
on classification trees is applied.  Classification tree analysis is 
a well known data mining technique used to predict or explain 
responses of cases on a categorical, dependent variable from 
scores on independent, predictor variables [21]. It is a 
transparent and useful exploratory technique to objectively 
define thresholds on the CFD-based spatial metrics and to 
derive sets of rules that assign each building block with a 
sealed surface cover between 10 and 80% to an urban land-use 
class. To train the classifier, a random learning sample of 100 
cases for each of 5 land-use classes is selected: residential (1), 
industrial (2) and commercial areas (3), public and private 
services (4) and recreation, sports and green urban zones (5).  
A classification tree can perfectly describe any data set if 
enough rules are defined, so in order to avoid over-fitting, the 
tree is pruned to restrict its size to a comprehensible set of 
about 15 rules. The classifier is then applied to all building 
blocks with 10-80% sealed surface cover. Its performance is 
assessed by comparing the predicted class memberships to the 
MOLAND land-use map, taking into account the size of the 
building blocks. This is achieved by putting an area based 
weight on each block in the error calculation.  The reasoning 
behind this weighting is that misclassifying small blocks is less 
severe than misclassifying large blocks in the final predicted 
land-use map. 

V. RESULTS AND DISCUSSION 

The accuracy of the vegetation proportions predicted by the 
regression model (table I) is assessed with a temporally filtered 
validation sample that consists of 2500 ETM+ pixels, for which 
the reference proportions are determined from down sampling 
the land-cover classification derived from a Quickbird image. 
The mean absolute error (MAE) is an indication of the error 
magnitude. It tells us that, on average, an error of 0.10 (or 
10%) is made in the estimation of the vegetation fraction 
within each pixel. The mean error (ME) on the other hand 
represents the error bias. Its value close to zero indicates that 
overestimations compensate underestimations within the 
sample. From the standard deviations (σ) we can learn that 
95% of the over and underestimations fall within the interval of 
-0.27 to 0.28. 

 

TABLE I.  ESTIMATION ERRORS OF VEGETATION FRACTION 

MAE ME RMSE σ(MAE) σ(ME) 

0.105 0.005 0.141 0.095 0.141 

 

The sub-pixel sealed surface fractions are considered the 
complement of the estimated vegetation fractions within the 
ETM+ pixels labelled as urban by the unsupervised, SOM 
based land-cover classification of the ETM+ image. The 15 
initial classes of the land-cover map produced by the SOM 
classifier are recoded into 6 meaningful information classes 
(fig. 1a). The map shows a high level of spectral confusion 
between urban, bare soil and one of the vegetation classes, 
which makes it impossible to directly use the classification 
output as an urban mask. To enhance the unsupervised 
classification output, three knowledge-based post-classification 
rules (table II) are developed and applied in combination with a 
filter to remove individual, isolated pixels. The first rule re-
assigns erroneous bare soil clumps within the urban fabric to 
neighbouring urban type clumps. The adjacency threshold is 
set to a relatively high 0.75, meaning that bare soil clumps that 
share at least 75% of their border with an urban clump have 
their class changed to urban.  Because actual fallow fields do 
not share a large part of their border with urban surfaces, 
setting an area threshold is not necessary.  This rule effectively 
cleans up most of the bare soil/urban confusion in the city 
centre. The high degree of confusion in the classification 
produces some larger misclassified areas near the western part 
of the city, which the post-classification is not able to fully 
resolve. A few large misclassified clumps are therefore 
manually corrected after visual inspection. A second post-
classification rule is developed to operate on parts of low 
density urban areas that were classified into the same class as 
peat and bog, a type of vegetation cover that is common in the 
Wicklow Mountains. Because all misclassified clumps of this 
type within the city are relatively small compared to actual peat 
and bog regions, an area threshold is sufficient to improve the 
classification. A third and final rule is applied to remove small 
groups of shadow pixels in the city. To avoid confusion with 
shadows near vegetation, an adjacency threshold is used 
together with the area threshold.  

TABLE II.  KNOWLEDGE-BASED POST-CLASSIFICATION RULES  

Rule  Original class Target class Area  Adjacency  

1 Bare Soil Urban Unlimited 0.75 

2 Mixed urban-vegetation Urban < 200 Unlimited 

3 Shadow Urban < 1000 0.75 

 

After post-classification, the land-cover map clearly 
improves (fig. 1b). The overall accuracy and the kappa index of 
agreement derived from the confusion matrix of the validation 
sample are 93% and 89% respectively. The highest errors are 
found for the bare soil class, which has a producer’s accuracy 
of 68% and a user’s accuracy of 88%. This error is caused for a 
large part by confusion between bare soil and vegetation, 

)()()( xCFDxPxE −=
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which can be attributed to the mixed pixel problem (e.g. 
agricultural fields and pastures). Another explanation is 
misclassification among bare soil and urban areas, which is due 
to spectral similarities, especially within the numerous 
construction zones within the area. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Land-cover classification  created by self-organising map (a) and 
enhancement by knowledge-based post-classification (b).  

From a combination of the urban mask and the complement 
of the vegetation proportions estimated by linear regression, a 
sealed surface map of the study area can be produced (fig. 2).  
This map forms the basis for deriving spatial metrics. The 
average sealed surface cover for each of the building blocks 
can also be calculated from it. This is useful to visualise the 
built-up density within the study area (fig. 3). The built-up 
density map clearly shows the urban gradient: from a compact 
and dense city centre to a low density, sprawled sub-urban 
zone. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Combination of urban mask and estimated sealed surface cover for 
part of the Dublin study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Urban density map based on average sealed surface cover within 
building blocks. 

To further characterise the building blocks, functions (1) 
and (2) are fitted to the cumulative frequency distribution of 
each block. Figs. 4 and 5 show typical examples for blocks 
with industrial and residential land-use. For industrial land-use 
(fig. 4), the CFD takes an exponential form, which results in a 
relatively low fitting error for the exponential function. For 
residential land-use (fig. 5), the CFD is S-shaped and 
consequently the error of fit of the exponential function is 
much higher. The difference in error of fit between the 
industrial and residential land-use types can be exploited to 
distinguish them in an automated approach. The shape of the 
fitted functions, such as the steepness of the sigmoid curve, is 
reflected by the function parameters and may also represent 
discriminatory information. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Cumulative frequency distribution of building block with industrial 
land-use type. Error of fit of sigmoid function (blue) = 0.37, of exponential 

function (red) = 2.91 
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Figure 5.  Cumulative frequency distribution of building block with 
residential land-use type. Error of fit of sigmoid function (blue) = 2.09, of 

exponential function (red) = 13.6 

To relate the parameters of the fitted functions to the 5 
urban land-use types of blocks with 10%-80% sealed surface 
cover, a classification tree is developed using the learning 
sample of 100 blocks per class. The resulting, pruned tree has 
16 rules, most of which apply a combination of the error of fit 
of the exponential function, the parameters of the sigmoid 
function, the sealed surface cover and the size of the block. The 
overall error of 78%, weighted according to the size of the 
building blocks (table III), is acceptable but hides the poor 
performance of the classifier for commercial areas and services 
because these land-use types are less prominent in the study 
area.  The cause of this low accuracy lies in the confusion with 
residential land, and in the confusion among the two classes 
themselves. The classifier also confuses services with industrial 
areas in some cases, which explains the mediocre user’s 
accuracy of 65% for this class. A quarter of the blocks with 
sports and recreation facilities is labelled as services because 
many public or private services in our study area are also 
situated in green areas. On the other hand, quite some sparsely 
built residential blocks are recognised as green areas, which 
accounts for the relatively low user’s accuracy of the 
recreation, sports and green urban class. The low accuracies for 
the non-residential land-use types may indicate that the 
cumulative frequency distribution in itself is not sufficient to 
fully capture the information provided by the sealed surface 
fractions within the building blocks. This may be explained by 
the fact that the frequency distribution only represents 
information about the composition of the pixels and not about 
their spatial positioning and structure.   If only a distinction is 
made between residential and non-residential land, the overall 
accuracy increases tot 86% and the per-class errors are at an 
acceptable level.  

 

 

TABLE III.  AREA WEIGHTED ACCURACIES OF 5 MAIN URBAN LAND-USE 

TYPES OF BUILDING BLOCKS WITH 10-80% SEALED SURFACE COVER 

 

VI. CONCLUSIONS 

 
In this research, the cumulative frequency distribution of 

sealed surface proportions derived from a sub-pixel 
classification of Landsat ETM+ pixels was used to characterise 
urban morphology within building blocks. The shape of the 
frequency distribution was quantified by parameters of fitted 
functions, constituting a type of spatial metric that exploits the 
advantages of continuous land-cover data, which in turn can be 
obtained from medium resolution satellite imagery.  This 
approach showed promising results when it was applied to 
distinguish general land-use types such as residential versus 
non-residential land. In combination with building block 
density information derived from the sealed surface map, it is 
possible to define different residential morphologies. A further 
distinction among functional land-use types such as 
commercial land and services was less successful. For that 
purpose, metrics that exploit the spatial relationships of the 
continuous sealed surface data within the building blocks may 
be required. This is a topic for further research. 
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